
109

CHAPTER 8

Expanding Our Horizons

Overview

In this chapterIn previous chapters, I discussed three fundamental concepts of

object-oriented design: objects, encapsulation, and abstract classes.

How a designer views these concepts is important. The traditional

ways are simply too limiting. In this chapter I step back and reflect

on topics discussed earlier in the book. My intent is to describe a

new way of seeing object-oriented design, which comes from the

perspective that design patterns create.

In this chapter,

• I compare and contrast the traditional way of looking at

objects—as a bundle of data and methods—with the new

way—as things with responsibilities.

• I compare and contrast the traditional way of looking at encap-

sulation—as hiding data—with the new way—as the ability to

hide anything. Especially important is to see that encapsulation

can be used to contain variation in behavior.

• I compare and contrast the traditional way of using inherit-

ance—for specialization and reuse—with the new way—as a

method of classifying objects.

• The new viewpoints allow for containing variation of behaviors

in objects.

• I show how the conceptual, specification, and implementation

perspectives relate to an abstract class and its derived classes.

ch08.fm Page 109 Friday, June 8, 2001 12:00 PM

110 Part III • Design Patterns

Acknowledgment Perhaps this new perspective is not all that original. I believe that

this perspective is one that many developers of the design patterns

held when they developed what ended up being called a pattern.

Certainly, it is a perspective that is consistent with the writings of

Christopher Alexander, Jim Coplien, and the Gang of Four.

While it may not be original, it has also not been expressed in quite

the way I do in this chapter and in this book. I have had to distill

this way of looking at patterns from the way design patterns behave

and how they have been described by others.

When I call it a new perspective, what I mean is that it is most likely

a new way for most developers to view object orientation. It was

certainly new to me when I was learning design patterns for the

first time.

Objects: the Traditional View
and the New View

The traditional view:

data with methods

The traditional view of objects is that they are data with methods.

One of my teachers called them “smart data.” It is just a step up

from a database. This view comes from looking at objects from an

implementation perspective.

The new view: things

with responsibilities

While this definition is accurate, as explained in Chapter 1, “The

Object-Oriented Paradigm,” it is based on the implementation per-

spective. A more useful definition is one based on the conceptual

perspective—an object is an entity that has responsibilities. These

responsibilities give the object its behavior. Sometimes, I also think

of an object as an entity that has specific behavior.

This is a better definition because it helps to focus on what the

objects are supposed to do, not simply on how to implement them.

This enables me to build the software in two steps:

ch08.fm Page 110 Friday, June 8, 2001 12:00 PM

Chapter 8 • Expanding Our Horizons 111

1. Make a preliminary design without worrying about all of the

details involved.

2. Implement the design achieved.

Ultimately, this perspective allows for better object selection and

definition (in a sense, the main point of design anyway). Object

definition is more flexible; by focusing on what an object does,

inheritance allows us to use different, specific behaviors when

needed. A focus on implementation may achieve this, but flexibility

typically comes at a higher price.

It is easier to think in terms of responsibilities because that helps to

define the object’s public interface. If an object has a responsibility,

there must be some way to ask it to perform its responsibility. How-

ever, it does not imply anything about what is inside the object. The

information for which the object is responsible may not even be

inside the object itself.

For example, suppose I have a Shape object and its responsibilities

are

• To know where it is located

• To be able to draw itself on a display

• To be able to remove itself from a display

These responsibilities imply that a particular set of method calls

must exist:

• getLocation(...)

• drawShape(...)

• unDrawShape(...)

There is no implication about what is inside of Shape. I only care

that Shape is responsible for its own behaviors. It may have

ch08.fm Page 111 Friday, June 8, 2001 12:00 PM

112 Part III • Design Patterns

attributes inside it or it may have methods that calculate or even

refer to other objects. Thus, Shape might contain attributes about

its location or it might refer to another database object to get its

location. This gives you the flexibility you need to meet your mod-

eling objectives.

Interestingly, you will find that focusing on motivation rather than

on implementation is a recurring theme in design patterns.

Look at objects this way. Make it your basic viewpoint for objects. If

you do, you will have superior designs.

Encapsulation: the Traditional View
and the New View

My object-oriented

umbrella

In my classes on pattern-oriented design, I often ask my students,

“Who has heard encapsulation defined as ‘data hiding’?” Almost

everyone raises his or her hand.

Then I proceed to tell a story about my umbrella. Keep in mind that

I live in Seattle, which has a reputation for being wetter than it is,

but is still a pretty wet place in the fall, winter, and spring. Here,

umbrellas and hooded coats are personal friends!

Let me tell you about my great umbrella. It is large enough to get

into! In fact, three or four other people can get in it with me. While

we are in it, staying out of the rain, I can move it from one place to

another. It has a stereo system to keep me entertained while I stay

dry. Amazingly enough, it can also condition the air to make it

warmer or colder. It is one cool umbrella.

My umbrella is convenient. It sits there waiting for me. It has

wheels on it so that I do not have to carry it around. I don’t even

have to push it because it can propel itself. Sometimes, I will open

the top of my umbrella to let in the sun. (Why I am using my

umbrella when it is sunny outside is beyond me!)

ch08.fm Page 112 Friday, June 8, 2001 12:00 PM

Chapter 8 • Expanding Our Horizons 113

In Seattle, there are hundreds of thousands of these umbrellas in all

kinds of colors.

Most people call them cars.

But I think of mine as an umbrella because an umbrella is some-

thing you use to keep out of the rain. Many times, while I am wait-

ing outside for someone to meet me, I sit in my “umbrella” to stay

dry!

Definitions can be

limitations

Of course, a car isn’t really an umbrella. Yes, you can use it to say

out of the rain, but that is too limited a view of a car. In the same

way, encapsulation isn’t just for hiding data. That is too limited a

view of encapsulation. To think of it that way constrains my mind

when I design.

How to think about

encapsulation

Encapsulation should be thought of as “any kind of hiding.” In other

words, it can hide data. But it can also hide implementations, derived

classes, or any number of things. Consider the diagram shown in Fig-

ure 8-1. You might recollect this diagram from Chapter 7, “The

Adapter Pattern.”

Figure 8-1 Adapting XXCircle with Circle.

ch08.fm Page 113 Friday, June 8, 2001 12:00 PM

114 Part III • Design Patterns

Multiple levels of

encapsulation

Figure 8-1 shows many kinds of encapsulation:

• Encapsulation of data—The data in Point, Line, Square, and

Circle are hidden from everything else.

• Encapsulation of methods—For example, Circle’s setLocation.

• Encapsulation of subclasses—Clients of Shape do not see Points,

Lines, Squares, or Circles.

• Encapsulation of other objects—Nothing but Circle is aware of

xxCircle.

One type of encapsulation is thus achieved when there is an

abstract class that behaves polymorphically without the client of the

abstract class knowing what kind of derived class actually is present.

Furthermore, adapting interfaces hides what is behind the adapting

object.

The advantage of

this new definition

The advantage of looking at encapsulation this way is that it gives

me a better way to split up (decompose) my programs. The encap-

sulating layers become the interfaces I design to. By encapsulating

different kinds of Shapes, I can add new ones without changing

any of the client programs using them. By encapsulating XXCircle

behind Circle, I can change this implementation in the future if I

choose to or need to.

Inheritance as a

concept versus

inheritance for

reuse

When the object-oriented paradigm was first presented, reuse of

classes was touted as being one of its big benefits. This reuse was

usually achieved by creating classes and then deriving new classes

based on these base classes. Hence the term specialized classes for

those subclasses that were derived from other classes (which were

called generalized classes).

I am not arguing with the accuracy of this, rather I am proposing

what I believe to be a more powerful way of using inheritance. In

the example above, I can do my design based on different special

ch08.fm Page 114 Friday, June 8, 2001 12:00 PM

Chapter 8 • Expanding Our Horizons 115

types of Shapes (that is, Points, Lines, Squares and Circles).

However, this will probably not have me hide these special cases

when I think about using Shapes—I will probably take advantage

of the knowledge of these concrete classes.

If, however, I think about Shapes as a way of classifying Points,

Lines, Squares and Circles, I can more easily think about them

as a whole. This will make it more likely I will design to an inter-

face (Shapes). It also means if I get a new Shape, I will be less

likely to have designed myself into a difficult maintenance position

(because no client object knows what kind of Shape it is dealing

with anyway).

Find What Is Varying and Encapsulate It

Using inheritance

this way in design

patterns

In Design Patterns: Elements of Reusable Object-Oriented Software, the

Gang of Four suggests the following:

Consider what should be variable in your design. This

approach is the opposite of focusing on the cause of

redesign. Instead of considering what might force a

change to a design, consider what you want to be able to

change without redesign. The focus here is on encapsulat-

ing the concept that varies, a theme of many design pat-

terns.1

Or, as I like to rephrase it, “Find what varies and encapsulate it.”

These statements seem odd if you only think about encapsulation

as data-hiding. They are much more sensible when you think of

encapsulation as hiding classes using abstract classes. Using compo-

sition of a reference to an abstract class hides the variations.

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995, p. 29.

ch08.fm Page 115 Friday, June 8, 2001 12:00 PM

116 Part III • Design Patterns

In effect, many design patterns use encapsulation to create layers

between objects—enabling the designer to change things on differ-

ent sides of the layers without adversely affecting the other side.

This promotes loose-coupling between the sides.

This way of thinking is very important in the Bridge pattern, which

will be discussed in Chapter 9, “The Bridge Pattern.” However,

before proceeding, I want to show a bias in design that many devel-

opers have.

Containing

variation in data

versus containing

variation in

behavior

Suppose I am working on a project that models different character-

istics of animals. My requirements are the following:

• Each type of animal can have a different number of legs.

– Animal objects must be able to remember and retrieve this

information.

• Each type of animal can have a different type of movement.

– Animal objects must be able to return how long it will take

to move from one place to another given a specified type of

terrain.

A typical approach of handling the variation in the number of legs

would be to have a data member containing this value and having

methods to set and get it. However, one typically takes a different

approach to handling variation in behavior.

Suppose there are two different methods for moving: walking and

flying. These requirements need two different pieces of code: one to

handle walking and one to handle flying; a simple variable won’t

work. Given that I have two different methods, I seem to be faced

with a choice of approach:

• Having a data member that tells me what type of movement

my object has.

ch08.fm Page 116 Friday, June 8, 2001 12:00 PM

Chapter 8 • Expanding Our Horizons 117

• Having two different types of Animals (both derived from the

base Animal class)—one for walking and one for flying.

Unfortunately, both of these approaches have problems:

• Tight coupling—The first approach (using a flag with presumably

a switch based on it) may lead to tight coupling if the flag starts

implying other differences. In any event, the code will likely be

rather messy.

• Too many details—The second approach requires that I also man-

age the subtype of Animal. And I cannot handle Animals that

can both walk and fly.

Handling variation

in behavior with

objects

A third possibility exists: have the Animal class contain an object

that has the appropriate movement behavior. I show this in Figure

8-2.

Figure 8-2 Animal containing AnimalMovement object.

Overkill?This may seem like overkill at first. However, it’s nothing more

than an Animal containing an object that contains the movement

behavior of the Animal. This is very analogous to having a mem-

ber containing the number of legs—in which case an intrinsic type

object is containing the number of legs. I suspect these appear

more different in concept than they really are, because Figures 8-2

and 8-3 appear to be different.

ch08.fm Page 117 Friday, June 8, 2001 12:00 PM

118 Part III • Design Patterns

Figure 8-3 Showing containment as a member.

Comparing the two Many developers tend to think that one object containing another

object is inherently different from an object having a mere data

member. But data members that appear not to be objects (integers

and doubles, for example) really are. In object-oriented program-

ming, everything is an object, even these intrinsic data types, whose

behavior is arithmetic.

Using objects to contain variation in attributes and using objects to

contain variation in behavior are very similar; this can be most eas-

ily shown through an example. Let’s say I am writing a point-of-

sale system. In this system, there is a sales receipt. On this sales

receipt there is a total. I could start out by making this total be a

type double. However, if I am dealing with an international appli-

cation, I quickly realize I need to handle monetary conversions, and

so forth. I might therefore make a Money class that contains an

amount and a currency. Total can now be of type Money.

Using the Money class this way appears to be using an object just to

contain more data. However, when I need to convert Money from

one currency to the next, it is the Money object itself that should do

the conversion, because objects should be responsible for them-

selves. At first it may appear that this conversion can be done by

simply having another data member that specifies what the conver-

sion factor is.

However, it may be more complicated than this. For example, per-

haps I need to be able to convert currency based on past dates. In

that case, if I add behaviors to the Money or Currency classes I am

essentially adding different behaviors to the SalesReceipt as well,

ch08.fm Page 118 Friday, June 8, 2001 12:00 PM

Chapter 8 • Expanding Our Horizons 119

based upon which Money objects (and therefore which Currency

objects) it contains.

I will demonstrate this strategy of using contained objects to per-

form required behavior in the next few design patterns.

Commonality/Variability
and Abstract Classes

Object-oriented

design captures all

three perspectives

Consider Figure 8-4. It shows the relationship between

• Commonality/variability analysis

• The conceptual, specification, and implementation perspectives

• An abstract class, its interface, and its derived classes

Figure 8-4 The relationship between commonality/variability analysis,

perspectives, and abstract classes.

As you can see in Figure 8-4, commonality analysis relates to the

conceptual view of the problem domain and variability analysis

relates to the implementation, that is, to specific cases.

ch08.fm Page 119 Friday, June 8, 2001 12:00 PM

120 Part III • Design Patterns

Now, specification

gives a better under-

standing of abstract

classes

The specification perspective lies in the middle. Both commonality

and variability are involved in this perspective. The specification

describes how to communicate with a set of objects that are concep-

tually similar. Each of these objects represents a variation of the

common concept. This specification becomes an abstract class or an

interface at the implementation level.

In the new perspective of object-oriented design, I can now say the

following:

This simplifies the design process of the classes into a two-step pro-

cedure:

Mapping with
Abstract Classes Discussion

Abstract class → the

central binding concept

An abstract class represents the core

concept that binds together all of the deriva-
tives of the class. This core concept is what

defines the commonality.

Commonality → which

abstract classes to use

The commonalities define the abstract

classes I need to use.

Variations → derivation of

an abstract class

The variations identified within that com-

monality become derivations of the abstract

classes.

Specification → interface

for abstract class

The interface for these classes corresponds

to the specification level.

When Defining . . . You Must Ask Yourself. . .

An abstract class
(commonality)

What interface is needed to handle all of the
responsibilities of this class?

Derived classes Given this particular implementation (this varia-
tion), how can I implement it with the given

specification?

ch08.fm Page 120 Friday, June 8, 2001 12:00 PM

Chapter 8 • Expanding Our Horizons 121

The relationship between the specification perspective and the con-

ceptual perspective is this: It identifies the interface I need to use to han-

dle all of the cases of this concept (that is, the commonality).

The relationship between the specification perspective and the

implementation perspective is this: Given this specification, how can I

implement this particular case (this variation)?

Summary

In this chapterThe traditional way of thinking about objects, encapsulation, and

inheritance is very limiting. Encapsulation exists for so much more

than simply hiding data. By expanding the definition to include any

kind of hiding, I can use encapsulation to create layers between

objects—enabling me to change things on one side of a layer with-

out adversely affecting the other side.

Inheritance is better used as a method of consistently dealing with

different concrete classes that are conceptually the same rather

than as a means of specialization.

The concept of using objects to hold variations in behavior is not

unlike the practice of using data members to hold variations in

data. Both allow for the encapsulation (and therefore extension) of

the data/behavior being contained.

ch08.fm Page 121 Friday, June 8, 2001 12:00 PM

ch08.fm Page 122 Friday, June 8, 2001 12:00 PM

